Super-Resolution Generalizing Nonlocal-Means and Kernel Regression

نویسندگان

  • Yong-Rim Kang
  • Yong-Jin Kim
چکیده

Super-resolution without explicit sub-pixel motion estimation is a very active subject of image reconstruction containing general motion. The Non-Local Means (NLM) method is a simple image reconstruction method without explicit motion estimation. In this paper we generalize NLM method to higher orders using kernel regression can apply to super-resolution reconstruction. The performance of the generalized method is compared with other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Image Super-Resolution via Adaptive Joint Kernel Regression

Single image super-resolution (SR) methods can be broadly categorized into three classes: interpolation-based methods, reconstruction-based methods [7], and example-based methods [2, 3, 6]. The reconstruction-based methods often incorporate prior knowledge to regularize the ill-posed problem. For example, Zhang et al. [7] assembled the Steering Kernel Regression [5] (SKR)-based local prior and ...

متن کامل

Improving Super-resolution Techniques via Employing Blurriness Information of the Image

Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...

متن کامل

Super-resolution of Defocus Blurred Images

Super-resolution is a process that combines information from some low-resolution images in order to produce an image with higher resolution. In most of the previous related work, the blurriness that is associated with low resolution images is assumed to be due to the integral effect of the acquisition device’s image sensor. However, in practice there are other sources of blurriness as well, inc...

متن کامل

Image Super-Resolution Using Local Learnable Kernel Regression

In this paper, we address the problem of learning-based image super-resolution and propose a novel approach called Local Learnable Kernel Regression (LLKR). The proposed model employs a local metric learning method to improve the kernel regression for reconstructing high resolution images. We formulate the learning problem as seeking multiple optimal Mahalanobis metrics to minimize the total ke...

متن کامل

Image Super-Resolution Reconstruction Based On Multi-Dictionary Learning

In order to overcome the problems that the single dictionary cannot be adapted to variety types of images and the reconstruction quality couldn’t meet the application, we propose a novel Multi-Dictionary Learning algorithm for feature classification. The algorithm uses the orientation information of the low resolution image to guide the image patches in the database to classify, and designs the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1503.04253  شماره 

صفحات  -

تاریخ انتشار 2015